Regional seismic velocity changes following the 2019 Mw 7.1 Ridgecrest, California earthquake from autocorrelations and P/S converted waves

Author:

Lu Y1ORCID,Ben-Zion Y1

Affiliation:

1. Department of Earth Sciences and Southern California Earthquake Center, University of Southern California, Los Angeles, CA 90089, USA

Abstract

SUMMARY We examine regional transient changes of seismic velocities generated by the 2019 Mw 7.1 Ridgecrest earthquake in California, using autocorrelations of moving time windows in continuous waveforms recorded at regional stations. We focus on traveltime differences in a prominent phase generated by an interface around 2 km depth, associated with transmitted Pp waves and converted Ps waves from the ongoing microseismicity. Synthetic tests demonstrate the feasibility of the method for monitoring seismic velocity changes. Taking advantage of the numerous aftershocks in the early period following the main shock, we obtain a temporal resolution of velocity changes up to 20 min in the early post-main-shock period. The results reveal regional coseismic velocity drops in the top 1–3 km with an average value of ∼2 per cent over distances up to 100 km from the Ridgecrest event. These average velocity drops are likely dominated by larger changes in the shallow materials and are followed by rapid recoveries on timescales of days. Around the north end of the Ridgecrest rupture and the nearby Coso geothermal region, the observed coseismic velocity drops are up to ∼8 per cent. The method allows monitoring temporal changes of seismic velocities with high temporal resolution, fast computation and precise spatial mapping of changes. The results suggest that significant temporal changes of seismic velocities of shallow materials are commonly generated on a regional scale by large events.

Funder

U.S. Department of Energy

Southern California Earthquake Center

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3