Affiliation:
1. Department of Earth Sciences and Southern California Earthquake Center, University of Southern California, Los Angeles, CA 90089, USA
Abstract
SUMMARY
We examine regional transient changes of seismic velocities generated by the 2019 Mw 7.1 Ridgecrest earthquake in California, using autocorrelations of moving time windows in continuous waveforms recorded at regional stations. We focus on traveltime differences in a prominent phase generated by an interface around 2 km depth, associated with transmitted Pp waves and converted Ps waves from the ongoing microseismicity. Synthetic tests demonstrate the feasibility of the method for monitoring seismic velocity changes. Taking advantage of the numerous aftershocks in the early period following the main shock, we obtain a temporal resolution of velocity changes up to 20 min in the early post-main-shock period. The results reveal regional coseismic velocity drops in the top 1–3 km with an average value of ∼2 per cent over distances up to 100 km from the Ridgecrest event. These average velocity drops are likely dominated by larger changes in the shallow materials and are followed by rapid recoveries on timescales of days. Around the north end of the Ridgecrest rupture and the nearby Coso geothermal region, the observed coseismic velocity drops are up to ∼8 per cent. The method allows monitoring temporal changes of seismic velocities with high temporal resolution, fast computation and precise spatial mapping of changes. The results suggest that significant temporal changes of seismic velocities of shallow materials are commonly generated on a regional scale by large events.
Funder
U.S. Department of Energy
Southern California Earthquake Center
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献