Physics-inspired pseudo-transient method and its application in modelling focused fluid flow with geological complexity

Author:

Wang Lawrence Hongliang1,Yarushina Viktoriya M1,Alkhimenkov Yury23ORCID,Podladchikov Yury23ORCID

Affiliation:

1. Department of Reservoir Technology, Institute for Energy Technology, 2007 Kjeller, Norway

2. Swiss Geocomputing Center, University of Lausanne, CH-1015 Lausanne, Switzerland

3. Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia

Abstract

SUMMARY Two-phase flow equations that couple solid deformation and fluid migration have opened new research trends in geodynamic simulations and modelling of subsurface engineering. Physical non-linearity of fluid-rock systems and strong coupling between flow and deformation in such equations lead to interesting predictions such as spontaneous formation of focused fluid flow in ductile/plastic rocks. However, numerical implementation of two-phase flow equations and their application to realistic geological environments with complex geometries and multiple stratigraphic layers is challenging. This study documents an efficient pseudo-transient solver for two-phase flow equations and describes the numerical theory and physical rationale. We provide a simple explanation for all steps involved in the development of a pseudo-transient numerical scheme for various types of equations. Two different constitutive models are used in our formulations: a bilinear viscous model with decompaction weakening and a viscoplastic model that allows decompaction weakening at positive effective pressures. The resulting numerical models are used to study fluid leakage from high porosity reservoirs into less porous overlying rocks. The interplay between time-dependent rock deformation and the buoyancy of ascending fluids leads to the formation of localized channels. The role of material parameters, reservoir topology, geological heterogeneity and porosity is investigated. Our results show that material parameters control the propagation speed of channels while the geometry of the reservoir controls their locations. Geological layers present in the overburden do not stop the propagation of the localized channels but rather modify their width, permeability, and growth speed.

Funder

Research Council of Norway

Ministry of Science and Higher Education of the Russian Federation

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3