Microtremor surveys based on rotational seismology: theoretical analysis with focus on separation of Rayleigh and Love waves in general wavefield of microtremors

Author:

Cho I1ORCID,Yoshida K2ORCID,Uebayashi H3ORCID

Affiliation:

1. Geological Survey of Japan, AIST, Tsukuba Central 7, Tsukuba 305-8567, Japan

2. Geo-Research Institute, 6F, Kokumin Kaikan Osakajo Building, 2-1-2 Otemae, Chuo-ku, Osaka 540-0008, Japan

3. Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-nishi, Kumatori, Sennan 590-0494, Japan

Abstract

SUMMARY The applicability of rotational seismology to the general wavefield of microtremors is theoretically demonstrated based on a random process model of a 2-D wavefield. We show the effectiveness of taking the rotations (i.e. spatial differentiation) of microtremor waveforms in separating the Rayleigh and Love waves in a wavefield where waves are simultaneously arriving from various directions with different intensities. This means that a method based on rotational seismology (a rotational method) is capable of separating Rayleigh and Love waves without adopting a specific array geometry or imposing a specific assumption on the microtremor wavefield. This is an important feature of a rotational method because the spatial autocorrelation (SPAC) method, a conventional approach for determining phase velocities in microtremor array surveys, requires either the use of a circular array or the assumption of an isotropic wavefield (i.e. azimuthal averaging of correlations is required). Derivatives of the SPAC method additionally require the assumption that Rayleigh and Love waves are uncorrelated. We also show that it is possible to apply a rotational method to determine the characteristics of Love waves based on a simple three-point microtremor array that consists of translational (i.e. ordinary) three-component sensors. In later sections, we assume realistic data processing for microtremor arrays with translational sensors to construct a theoretical model to evaluate the effects of approximating spatial differentiation via finite differencing (i.e. array-derived rotation, ADR) and the effects of incoherent noise on analysis results. Using this model, it is shown that in a short-wavelength range compared to the distance for finite differencing (e.g. $\lambda < 3h$, where $\lambda $ and $h$ are the wavelength and distance for finite differencing, respectively), the leakage of unwanted wave components can determine the analysis limit. It is also shown that in a long-wavelength range (e.g. $\lambda > 3h$), the signal intensity gradually decreases, and thus the effects of incoherent noise increase (i.e. the signal-to-noise ratio, SNR decreases) and determine the analysis limit. We derive the relation between the SNR and wavelength. Although the analysis results quantitatively depend on the array geometry used for finite differencing, the qualitative understanding supported by mathematical expressions with a physically clear meaning can serve as a guideline for the treatment of data obtained from ADR.

Funder

JSPS

KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference51 articles.

1. Space and time spectra of stationary stochastic waves, with special reference to microtremors;Aki;Bull. Earthq. Res. Inst. Univ. Tokyo,1957

2. A note on the use of microseisms in determining the shallow structures of the earth's crust;Aki;Geophysics,1965

3. S-wave velocity profiling by inversion of microtremor H/V spectrum;Arai;Bull. seism. Soc. Am.,2004

4. High-resolution frequency-wavenumber spectrum analysis;Capon;Proc. IEEE,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3