Efficient numerical Bloch solutions for multipulse surface NMR

Author:

Griffiths Matthew P1ORCID,Grombacher Denys J2ORCID,Larsen Jakob Juul1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus C, Denmark

2. Hydrogeophysics Group, Department of Geoscience, Aarhus University, 8000 Aarhus C, Denmark

Abstract

SUMMARY Simplified solutions of the Bloch equation can lead to inaccurate estimates of hydrogeological parameters from surface nuclear magnetic resonance measurements. Even for single pulse measurements, using simplified forward models is common practice because of the computational intensity of obtaining the full-Bloch solution. These challenges are exacerbated for multipulse sequences. We show parallelizing the full-Bloch solver on a Graphics Processing Unit reduces the solve time by three orders of magnitude. Further optimizations by numerical, analytical and hybrid solutions yield an additional 3× speed up. We simulate the full-Bloch physics for free-induction decay, spin-echo and pseudo-saturation recovery excitation schemes for an unprecedented range of physical scenarios. We explore the time-dependence and relaxation time sensitivity in these solution spaces. Characterizing the solution spaces with polynomials of the relaxation times, the solutions can be rapidly reproduced; a technique known as fast-mapping. By fitting these higher dimensional solution ensembles with polynomials, the original fast-mapping technique is extended to include T1 at arbitrary times. Accuracy of the 7th order polynomial is such that a minimum 96 per cent of the models are within a ±3 per cent relative error. This permits the rapid reproduction of full-Bloch solutions with a matrix multiplication and opens up surface NMR to time-series based inversion of single and multipulse data.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3