Low-frequency ambient distributed acoustic sensing (DAS): case study from Perth, Australia

Author:

Shragge Jeffrey1ORCID,Yang Jihyun1,Issa Nader2,Roelens Michael2,Dentith Michael3,Schediwy Sascha4

Affiliation:

1. Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden, CO, 80401, USA

2. Terra15 Technologies Pty Ltd, Perth, WA, 6000, Australia

3. School of Earth Sciences, The University of Western Australia, Crawley, WA, 6009, Australia

4. International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA, 6009, Australia

Abstract

SUMMARY Ambient wavefield data acquired on existing (so-called ‘dark fibre’) optical fibre networks using distributed acoustic sensing (DAS) interrogators allow users to conduct a wide range of subsurface imaging and inversion experiments. In particular, recorded low-frequency (<2 Hz) surface-wave information holds the promise of providing constraints on the shear-wave velocity (VS) to depths exceeding 0.5 km. However, surface-wave analysis can be made challenging by a number of acquisition factors that affect the amplitudes of measured DAS waveforms. To illustrate these sensitivity challenges, we present a low-frequency ambient wavefield investigation using a DAS data set acquired on a crooked-line optical fibre array deployed in suburban Perth, Western Australia. We record storm-induced microseism energy generated at the nearby Indian Ocean shelf break and/or coastline in a low-frequency band (0.04−1.80 Hz) and generate high-quality virtual shot gathers (VSGs) through cross-correlation and cross-coherence interferometric analyses. The resulting VSG volumes clearly exhibit surface wave energy, though with significant along-line amplitude variations that are due to the combined effects of ambient source directivity, crooked-line acquisition geometry and the applied gauge length, fibre coupling, among other factors. We transform the observed VSGs into dispersion images using two different methods: phase shift and high-resolution linear Radon transform. These dispersion images are then used to estimate 1-D near-surface VS models using multichannel analysis of surface waves (MASW), which involves picking and inverting the estimated Rayleigh-wave dispersion curves using the particle-swarm optimization global optimization algorithm. The MASW inversion results, combined with nearby deep borehole information and 2-D elastic finite-difference modeling, show that low-frequency ambient DAS data constrain the VS model, including a low-velocity channel, to at least 0.5 km depth. Thus, this case study illustrates the potential of using DAS technology as a tool for undertaking large-scale surface wave analysis in urban geophysical and geotechnical investigations to depths exceeding 0.5 km.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3