Local separation of potential field anomalies using equivalent sources: application for the 3-D structure of mantle uplift beneath Von Kármán crater, the Moon

Author:

Zhang Yi1ORCID,Xu Yixian1ORCID,Mooney Walter D2,Chen Chao3

Affiliation:

1. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

2. Earthquake Science Center, United States Geological Survey, Reston, VA 20192, USA

3. Hubei Subsurface Multi-Scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

Abstract

SUMMARY The separation of regional-residual anomalies plays an important role in the processing of potential field anomalies for obtaining better understandings of the nature of the underground sources. Many methods have been developed to achieve the separation of anomalies that are of distinct wavelengths. On the other hand, fewer studies have addressed the separation of local anomalies from the observed potential field anomalies. In this paper, we introduce a new process for separating localized anomalies from the observations under the Cartesian and spherical coordinates. The separation is achieved using the equivalent source technique and an iterative inversion process which is to refine and finalize the separated local anomalies. Additionally, we introduce an inversion method for determining the equivalent sources that are of varying dimensions, as well as a quantitative measurement to assess the accuracy of the separation process. Verified with synthetic examples, the proposed method could extract arbitrary shaped local anomalies from the rest with low error levels. Subsequently, we apply the method to the construction of a 3-D model of the mantle uplift beneath the Von Kármán crater (VKC) on the Moon. The VKC is the landing site of the Chinese lunar exploration mission Chang'e 4, which lies in the northwestern portion of the South-Pole Aitken (SPA) basin on the far side of the Moon. Multiple generations of mare basalts are identified within the VKC, which indicates a complex geological history of the basin. Insights into the evolutionary history of this region can be obtained by investigating the deep crustal structure of the VKC using topographic and gravity data. Processed with the proposed method, the 3-D structure we obtain provides evidence for separated mantle uplifting events triggered by the two impact events that created the VKC and the Von Kármán M crater, respectively.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can Targeted Source Information Be Extracted From Superimposed Magnetic Anomalies?;Journal of Geophysical Research: Solid Earth;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3