Large-scale balances and asymptotic scaling behaviour in spherical dynamos

Author:

Calkins Michael A1ORCID,Orvedahl Ryan J2,Featherstone Nicholas A3

Affiliation:

1. Department of Physics, University of Colorado, Boulder, CO 80309 USA

2. Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 USA

3. Southwest Research Institute, 1050 Walnut Street Suite 400, Boulder, CO 80302 USA

Abstract

Summary The large-scale dynamics of convection-driven dynamos in a spherical shell, as relevant to the geodynamo, is analyzed with numerical simulation data and asymptotic theory. An attempt is made to determine the asymptotic size (with the small parameter being the Ekman number, Ek) of the forces, and the associated velocity and magnetic fields. In agreement with previous work, the leading order mean force balance is shown to be thermal wind (Coriolis, pressure gradient, buoyancy) in the meridional plane and Coriolis-Lorentz in the zonal direction. The Lorentz force is observed to be weaker than the mean buoyancy force across a range of Ek and thermal forcing; the relative difference in these forces appears to be O(Ek1/6) within the parameter space investigated. We find that the thermal wind balance requires that the mean zonal velocity scales as O(Ek−1/3), whereas the meridional circulation is asymptotically smaller by a factor of O(Ek1/6). The mean temperature equation shows a balance between thermal diffusion and the divergence of the convective heat flux, indicating the presence of a mean temperature length scale of size O(Ek1/6). Neither the mean nor the fluctuating magnetic field show a strong dependence on the Ekman number, though the simulation data shows evidence of a mean magnetic field length scale of size O(Ek1/6). A consequence of the asymptotic ordering of the forces is that Taylor’s constraint is satisfied to accuracy O(Ek1/6), despite the absence of a leading-order magnetostrophic balance. Further consequences of the force balance are discussed with respect to the large-scale flows thought to be important for the geodynamo.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3