Nested regional-global seismic tomography and precise earthquake relocation along the Hikurangi subduction zone, New Zealand

Author:

Aziz Zanjani Farzaneh1ORCID,Lin Guoqing1,Thurber Clifford H2

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA

2. Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

SUMMARY Seismic and geodetic examinations of the Hikurangi subduction zone (HSZ) indicate a remarkably diverse and complex system. Here, we investigate the 3-D P-wave velocity structure of the HSZ by applying an iterative, nested regional-global tomographic algorithm. The new model reveals enhanced details of seismic variations along the HSZ. We also relocate over 57 000 earthquakes using this newly developed 3-D model and then further improve the relative locations for 75 per cent of the seismicity using waveform cross-correlation. Double seismic zone characteristics, including occurrence, depth distribution and thickness change along the strike of the HSZ. An aseismic but fast Vp zone separates the upper and lower planes of seismicity in the southern and northern North Island. The upper plane of seismicity correlates with low Vp zones below the slab interface, indicating fluid-rich channels formed on top and/or within a dehydrated crust. A broad low Vp zone is resolved in the lower part of the subducting slab that could indicate hydrous mineral breakdown in the slab mantle. In the northern North Island and southern North Island, the lower plane of seismicity mostly correlates with the top of these low Vp zones. The comparison between the thermal model and the lower plane of seismicity in the northern North Island supports dehydration in the lower part of the slab. The mantle wedge of the Taupo volcanic zone (TVZ) is characterized by a low velocity zone underlying the volcanic front (fluid-driven partial melting), a fast velocity anomaly in the forearc mantle (a stagnant cold nose) and an underlying low velocity zone within the slab (fluids from dehydration). These arc-related anomalies are the strongest beneath the central TVZ with known extensive volcanism. The shallow seismicity (<40 km depth) correlates with geological terranes in the overlying plate. The aseismic impermeable terranes, such as the Rakaia terrane, may affect the fluid transport at the plate interface and seismicity in the overlying plate, which is consistent with previous studies. The deep slow slip events (25–60 km depths) mapped in the Kaimanawa, Manawatu and Kapiti regions coincide with low Vp anomalies. These new insights on the structure along the HSZ highlight the change in the locus of seismicity and dehydration at depth that is governed by significant variations in spatial and probably temporal attributes of subduction zone processes.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3