Modelling tilt noise caused by atmospheric processes at long periods for several horizontal seismometers at BFO—a reprise

Author:

Zürn W1ORCID,Forbriger T12ORCID,Widmer-Schnidrig R13ORCID,Duffner P14,Ringler A T5ORCID

Affiliation:

1. Black Forest Observatory (Schiltach), Karlsruhe Institute of Technology and University of Stuttgart, Heubach 206, D-77709 Wolfach, Germany

2. Geophysical Institute (GPI), Karlsruhe Institute of Technology (KIT), Hertzstr. 16, D-76187 Karlsruhe, Germany

3. Institute of Geodesy, University of Stuttgart, Geschwister-Scholl-Strasse 24D, D-70174 Stuttgart, Germany

4. Geodetic Institute (GIK), Karlsruhe Institute of Technology (KIT), Englerstrasse 7, D-76128 Karlsruhe, Germany

5. U. S. Geological Survey, Albuquerque Seismological Laboratory, PO Box 82010, Albuquerque, NM 87198, USA

Abstract

SUMMARY Tilting of the ground due to loading by the variable atmosphere is known to corrupt very long period horizontal seismic records (below 10 mHz) even at the quietest stations. At BFO (Black Forest Observatory, SW-Germany), the opportunity arose to study these disturbances on a variety of simultaneously operated state-of-the-art broad-band sensors. A series of time windows with clear atmospherically caused effects was selected and attempts were made to model these ‘signals’ in a deterministic way. This was done by simultaneously least-squares fitting the locally recorded barometric pressure and its Hilbert transform to the ground accelerations in a bandpass between 100 and 3600 s periods. Variance reductions of up to 97 per cent were obtained. We show our results by combining the ‘specific pressure induced accelerations’ for the two horizontal components of the same sensor as vectors on a horizontal plane, one for direct pressure and one for its Hilbert transform. It turned out that at BFO the direct pressure effects are large, strongly position dependent and largely independent of atmospheric events for instruments installed on piers, while three post-hole sensors are only slightly affected. The infamous ‘cavity effects’ are invoked to be responsible for these large effects on the pier sensors. On the other hand, in the majority of cases all sensors showed very similar magnitudes and directions for the vectors obtained for the regression with the Hilbert transform, but highly variable from event to event especially in direction. Therefore, this direction most certainly has to do with the gradient of the pressure field moving over the station which causes a larger scale deformation of the crust. The observations are very consistent with these two fundamental mechanisms of how fluctuations of atmospheric surface pressure causes tilt noise. The results provide a sound basis for further improvements of the models for these mechanisms. The methods used here can already help to reduce atmospherically induced noise in long-period horizontal seismic records.

Funder

University of Jena

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3