Two-dimensional Bayesian inversion of magnetotelluric data using trans-dimensional Gaussian processes

Author:

Blatter Daniel1ORCID,Ray Anandaroop2ORCID,Key Kerry1ORCID

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA

2. Geoscience Australia, Symonston, Australian Capital Territory, 2609, Australia

Abstract

SUMMARY Bayesian inversion of electromagnetic data produces crucial uncertainty information on inferred subsurface resistivity. Due to their high computational cost, however, Bayesian inverse methods have largely been restricted to computationally expedient 1-D resistivity models. In this study, we successfully demonstrate, for the first time, a fully 2-D, trans-dimensional Bayesian inversion of magnetotelluric (MT) data. We render this problem tractable from a computational standpoint by using a stochastic interpolation algorithm known as a Gaussian process (GP) to achieve a parsimonious parametrization of the model vis-a-vis the dense parameter grids used in numerical forward modelling codes. The GP links a trans-dimensional, parallel tempered Markov chain Monte Carlo sampler, which explores the parsimonious model space, to MARE2DEM, an adaptive finite element forward solver. MARE2DEM computes the model response using a dense parameter mesh with resistivity assigned via the GP model. We demonstrate the new trans-dimensional GP sampler by inverting both synthetic and field MT data for 2-D models of electrical resistivity, with the field data example converging within 10 d on 148 cores, a non-negligible but tractable computational cost. For a field data inversion, our algorithm achieves a parameter reduction of over 32× compared to the fixed parameter grid used for the MARE2DEM regularized inversion. Resistivity probability distributions computed from the ensemble of models produced by the inversion yield credible intervals and interquartile plots that quantitatively show the non-linear 2-D uncertainty in model structure. This uncertainty could then be propagated to other physical properties that impact resistivity including bulk composition, porosity and pore-fluid content.

Funder

Columbia University

NIH

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference66 articles.

1. Flexible coupling in joint inversions: a Bayesian structure decoupling algorithm;Agostinetti;J. geophys. Res.,2018

2. Receiver function inversion by trans-dimensional Monte Carlo sampling;Agostinetti;J. geophys. Int.,2010

3. Local three-dimensional earthquake tomography by trans-dimensional Monte Carlo sampling;Agostinetti;J. geophys. Int.,2015

4. Julia: a fresh approach to numerical computing;Bezanson;SIAM Rev.,2017

5. Constraining fluid properties in the mantle and crust using Bayesian inversion of electromagnetic data;Blatter,2020

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3