Adjoint envelope tomography for scattering and absorption using radiative transfer theory

Author:

Zhang Tuo12ORCID,Sens-Schönfelder Christoph1ORCID

Affiliation:

1. GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

2. Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany

Abstract

SUMMARY To investigate the small-scale elastic structure of the subsurface at length scales below the resolution limits of waveform tomography, envelopes of high-frequency scattered seismic waveforms have been used with a variety of approaches. However, a rigorous framework for the iterative inversion of seismogram envelopes to image heterogeneity and high-frequency attenuation comparable to full waveform inversion (FWI) is missing. We present the mathematical framework for an iterative full envelope inversion using forward and adjoint simulations of the radiative transfer equations, in full analogy to FWI that is based on the wave equation. The forward and adjoint problems are solved by modelling 2-D multiple non-isotropic scattering in a random elastic medium with spatially variable heterogeneity and attenuation using the Monte Carlo method. Sensitivity kernels are derived for the squared difference between the full observed and modelled envelopes which is iteratively minimized with the L-BFGS method. We apply this algorithm in numerical tests in the acoustic approximation and show that it is possible to image the spatial distribution of small-scale heterogeneity and attenuation in iterative inversions. Our analysis shows that the relative importance of scattering and attenuation anomalies needs to be considered when the model resolution is assessed. The inversions confirm that the early coda is important for imaging the distribution of heterogeneity while later coda waves are more sensitive to intrinsic attenuation and we show that this dependency can be used to cope with the trade-off that exists between both material properties.

Funder

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3