Phosphorylation orchestrates the structural ensemble of the intrinsically disordered protein HMGA1a and modulates its DNA binding to the NFκB promoter

Author:

Kohl Bastian1,Zhong Xueyin1,Herrmann Christian2,Stoll Raphael1

Affiliation:

1. Faculty of Chemistry and Biochemistry, Biomolecular NMR Spectroscopy, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany

2. Faculty of Chemistry and Biochemistry, Protein Interactions, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany

Abstract

AbstractHigh Mobility Group Protein A1a (HMGA1a) is a highly abundant nuclear protein, which plays a crucial role during embryogenesis, cell differentiation, and neoplasia. Here, we present the first ever NMR-based structural ensemble of full length HMGA1a. Our results show that the protein is not completely random coil but adopts a compact structure consisting of transient long-range contacts, which is regulated by post-translational phosphorylation. The CK2-, cdc2- and cdc2/CK2-phosphorylated forms of HMGA1a each exhibit a different binding affinity towards the PRD2 element of the NFκB promoter. Our study identifies connected regions between phosphorylation sites in the wildtype ensemble that change considerably upon phosphorylation, indicating that these posttranslational modifications sites are part of an electrostatic contact network that alters the structural ensemble by shifting the conformational equilibrium. Moreover, ITC data reveal that the CK2-phosphorylated HMGA1a exhibits a different DNA promoter binding affinity for the PRD2 element. Furthermore, we present the first structural model for AT-hook 1 of HMGA1a that can adopt a transient α-helical structure, which might serve as an additional regulatory mechanism in HMAG1a. Our findings will help to develop new therapeutic strategies against HMGA1a-associated cancers by taking posttranslational modifications into consideration.

Funder

DFG

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference67 articles.

1. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding;Arai;Proc. Natl. Acad. Sci. U.S.A.,2015

2. Intrinsically disordered proteins in cellular signalling and regulation;Wright;Nat. Rev. Mol. Cell Biol.,2015

3. The alphabet of intrinsic disorder;Theillet;Intrinsically Disord. Proteins,2014

4. Intrinsic disorder and protein function;Dunker;Biochemistry-US,2002

5. Intrinsically disordered protein;Dunker;J. Mol. Graph. Model.,2001

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3