Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety

Author:

Wang Xiao12,Zheng Shuanghao123,Zhou Feng1,Qin Jieqiong12,Shi Xiaoyu134,Wang Sen12,Sun Chenglin1,Bao Xinhe134,Wu Zhong-Shuai1

Affiliation:

1. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

4. Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

Abstract

Abstract The rapid development of printed and microscale electronics imminently requires compatible micro-batteries (MBs) with high performance, applicable scalability, and exceptional safety, but faces great challenges from the ever-reported stacked geometry. Herein the first printed planar prototype of aqueous-based, high-safety Zn//MnO2 MBs, with outstanding performance, aesthetic diversity, flexibility and modularization, is demonstrated, based on interdigital patterns of Zn ink as anode and MnO2 ink as cathode, with high-conducting graphene ink as a metal-free current collector, fabricated by an industrially scalable screen-printing technique. The planar separator-free Zn//MnO2 MBs, tested in neutral aqueous electrolyte, deliver a high volumetric capacity of 19.3 mAh/cm3 (corresponding to 393 mAh/g) at 7.5 mA/cm3, and notable volumetric energy density of 17.3 mWh/cm3, outperforming lithium thin-film batteries (≤10 mWh/cm3). Furthermore, our Zn//MnO2 MBs present long-term cyclability having a high capacity retention of 83.9% after 1300 cycles at 5 C, which is superior to stacked Zn//MnO2 batteries previously reported. Also, Zn//MnO2 planar MBs exhibit exceptional flexibility without observable capacity decay under serious deformation, and remarkably serial and parallel integration of constructing bipolar cells with high voltage and capacity output. Therefore, low-cost, environmentally benign Zn//MnO2 MBs with in-plane geometry possess huge potential as high-energy, safe, scalable and flexible microscale power sources for direction integration with printed electronics.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Liaoning Revitalization Talents Program

Natural Science Foundation of Liaoning Province

Dalian Institute of Chemical Physics

Chinese Academy of Sciences

DICP

DNL Cooperation Fund

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3