Glycine-rich RNA-binding cofactor RZ1AL is associated with tomato ripening and development

Author:

Li Xindi123,Yang Yongfang4,Zeng Ni1,Qu Guiqin1,Fu Daqi1,Zhu Benzhong1,Luo Yunbo1,Ostersetzer-Biran Oren5,Zhu Hongliang1

Affiliation:

1. China Agricultural University College of Food Science & Nutritional Engineering, , Beijing 100083, China

2. College Station Department of Biochemistry and Biophysics, Texas A&M University, , TX 77840, USA

3. College Station Institute for Plant Genomics and Biotechnology, Texas A&M University, , TX 77840, USA

4. Tsinghua University Tsinghua-Peking Center for Life Sciences, School of Life Sciences, , Beijing 100084, China

5. Institute of Life Sciences Department of Plant and Environmental Sciences, , The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel

Abstract

Abstract Tomato ripening is a complex and dynamic process coordinated by many regulatory elements, including plant hormones, transcription factors, and numerous ripening-related RNAs and proteins. Although recent studies have shown that some RNA-binding proteins are involved in the regulation of the ripening process, understanding of how RNA-binding proteins affect fruit ripening is still limited. Here, we report the analysis of a glycine-rich RNA-binding protein, RZ1A-Like (RZ1AL), which plays an important role in tomato ripening, especially fruit coloring. To analyze the functions of RZ1AL in fruit development and ripening, we generated knockout cr-rz1al mutant lines via the CRISPR/Cas9 gene-editing system. Knockout of RZ1AL reduced fruit lycopene content and weight in the cr-rz1al mutant plants. RZ1AL encodes a nucleus-localized protein that is associated with Cajal-related bodies. RNA-seq data demonstrated that the expression levels of genes that encode several key enzymes associated with carotenoid biosynthesis and metabolism were notably downregulated in cr-rz1al fruits. Proteomic analysis revealed that the levels of various ribosomal subunit proteins were reduced. This could affect the translation of ripening-related proteins such as ZDS. Collectively, our findings demonstrate that RZ1AL may participate in the regulation of carotenoid biosynthesis and metabolism and affect tomato development and fruit ripening.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3