Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine

Author:

Zhong Haixia1,Liu Zhongjie2,Zhang Fuchun1,Zhou Xiaoming1,Sun Xiaoxia1,Li Yongyao2,Liu Wenwen2,Xiao Hua2,Wang Nan2,Lu Hong2,Pan Mingqi1,Wu Xinyu1,Zhou Yongfeng2

Affiliation:

1. Institute of Horticulture Crops , Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China

2. Shenzhen Branch , Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China

Abstract

AbstractGrafting, which joins a scion from a cultivar with the stem of a rootstock from a grapevine wild relative, is commonly used in viticulture. Grafting has crucial effects on various phenotypes of the cultivar, including its phenology, biotic and abiotic resistance, berry metabolome, and coloration, but the underlying genetics and regulatory mechanisms are largely unexplored. In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at three developmental stages (45, 75, and 105 days after flowering) of the Crimson Seedless cultivar (Vitis vinifera) grafted onto four rootstocks (three heterografts, CS/101-14, CS/SO4, and CS/110R and one self-graft, CS/CS) with own-rooted graft-free Crimson Seedless (CS) as the control. All the heterografts had a significant effect on berry reddening as early as ~45 days after flowering. The grafting of rootstocks promoted anthocyanin biosynthesis and accumulation in grape berries. The metabolomic features showed that cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, malvidin 3-O-glucoside, peonidin 3-O-glucoside, and petunidin 3-O-glucoside were the pigments responsible for the purplish-red peel color. Transcriptomic analyses revealed that anthocyanin biosynthesis-related genes, from upstream (phenylalanine ammonia-lyase) to downstream (anthocyanidin 3-O-glucosyltransferase and anthocyanidin synthase), were upregulated with the accumulation of anthocyanins in the heterografted plants. At the same time, all these genes were also highly expressed and more anthocyanin was accumulated in self-grafted CS/CS samples compared with own-rooted graft-free CS samples, suggesting that self-grafting may also have promoted berry reddening in grapevine. Our results reveal global transcriptomic and metabolomic features in berry color regulation under different grafting conditions that may be useful for improving berry quality in viticulture.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3