Biogeographic and metabolic studies support a glacial radiation hypothesis during Chrysanthemum evolution

Author:

Chen Xi12,Wang Haibin1,Jiang Jiafu1,Jiang Yifan1,Zhang Wanbo1,Chen Fadi1

Affiliation:

1. College of Horticulture State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, , Nanjing Agricultural University, 210095 Nanjing, China

2. College of Agriculture and Biological Sciences , Dali University, 671003 Dali, China

Abstract

Abstract Chrysanthemum (Chrysanthemum morifolium Ramat.) is an economically important plant species growing worldwide. However, its origin, especially as revealed by biogeographic and metabolomics research, remains unclear. To understand the geographic distribution of species diversity and metabolomics in three genera (Chrysanthemum, Ajania, and Phaeostigma), geographic information systems and gas chromatography–mass spectrometry were used in 19, 15, and 4 species respectively. China and Japan were two potential panbiogeographic nodes and diverse hotspots of Chrysanthemum, with species richness ratios of 58.97 and 33.33%. We studied different species from two hotspots which in similar geographical environments had closer chemotaxonomic relationships under the same cultivation conditions based on a cluster of 30 secondary metabolites. The average distribution altitude (ADA) differed significantly among Chrysanthemum, Ajania, and Phaeostigma in which it was 1227.49, 2400.12, and 3760.53 m.a.s.l. respectively, and the presence/absence of ray florets (RF) was significantly correlated with ADA (−0.62). Mountain landform was an important contributor to global Chrysanthemum diversity, playing a key role in the divergence and distribution pattern of Chrysanthemum and its allies. The Hengduan Mountains–Qinling Mountains (HDQ) in China was a potential secondary radiation and evolution center of Chrysanthemum and its related genera in the world. During the Quaternary glacial–interglacial cycles, this region became their refuge, and they radiated and evolved from this center.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Reference73 articles.

1. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review;Su;Hortic Res,2019

2. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis;Hirakawa;DNA Res,2019

3. Origins of cultivars of Chrysanthemum—evidence from the chloroplast genome and nuclear LFY gene;Ma;Acta Phytotaxon Sin,2020

4. Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences;Liu;PLoS One,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3