The C4 protein of tomato yellow leaf curl Sardinia virus primes drought tolerance in tomato through morphological adjustments

Author:

Pagliarani Chiara1,Moine Amedeo1,Chitarra Walter12,Nerva Luca12,Catoni Marco13,Tavazza Raffaela4,Matić Slavica1,Vallino Marta1,Secchi Francesca5,Noris Emanuela1

Affiliation:

1. Institute for Sustainable Plant Protection , National Research Council, Strada delle Cacce 73, 10135 Torino, Italy

2. Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA- VE). Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy

3. University of Birmingham School of Biosciences, , Birmingham, B15 2TT, UK

4. Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia , Rome, Italy

5. University of Torino Department of Agricultural, Forest and Food Sciences, , Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy

Abstract

Abstract Viruses can interfere with the ability of plants to overcome abiotic stresses, indicating the existence of common molecular networks that regulate stress responses. A begomovirus causing the tomato yellow leaf curl disease was recently shown to enhance heat tolerance in tomato and drought tolerance in tomato and Nicotiana benthamiana and experimental evidence suggested that the virus-encoded protein C4 is the main trigger of drought responses. However, the physiological and molecular events underlying C4-induced drought tolerance need further elucidation. In this study, transgenic tomato plants expressing the tomato yellow leaf curl Sardinia virus (TYLCSV) C4 protein were subjected to severe drought stress, followed by recovery. Morphometric parameters, water potential, gas exchanges, and hormone contents in leaves were measured, in combination with molecular analysis of candidate genes involved in stress response and hormone metabolism. Collected data proved that the expression of TYLCSV C4 positively affected the ability of transgenic plants to tolerate water stress, by delaying the onset of stress-related features, improving the plant water use efficiency and facilitating a rapid post-rehydration recovery. In addition, we demonstrated that specific anatomical and hydraulic traits, rather than biochemical signals, are the keynote of the C4-associated stress resilience. Our results provide novel insights into the biology underpinning drought tolerance in TYLCSV C4-expressing tomato plants, paving the way for further deepening the mechanism through which such proteins tune the plant-virus interaction.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3