Exploring the diversity and genetic structure of the U.S. National Cultivated Strawberry Collection

Author:

Zurn Jason D1,Hummer Kim E2,Bassil Nahla V2

Affiliation:

1. Department of Plant Pathology , Kansas State University, Manhattan, KS, United States of America

2. USDA-ARS National Clonal Germplasm Repository , Corvallis, OR United States of America

Abstract

Abstract The cultivated strawberry (Fragaria ×ananassa) arose through a hybridization of two wild American octoploid strawberry species in a French garden in the 1750s. Since then, breeders have developed improved cultivars adapted to different growing regions. Diverse germplasm is crucial to meet the challenges strawberry breeders will continue to address. The USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon maintains the U.S. strawberry collection. Recent developments in high-throughput genotyping for strawberry can provide new insights about the diversity and structure of the collection, germplasm management, and future breeding strategies. Genotyping was conducted on 539 F. ×ananassa accessions using either the iStraw35 or FanaSNP 50 K Axiom array. Data for markers shared by the two arrays were curated for call quality, missing data, and minor allele frequency resulting in 4033 markers for structure assessment, diversity analysis, pedigree confirmation, core collection development, and the identification of haplotypes associated with desirable traits. The F. ×ananassa collection was equally diverse across the different geographic regions represented. K-means clustering, sNMF, and UPGMA hierarchal clustering revealed seven to nine sub-populations associated with different geographic breeding centers. Two 100 accession core collections were created. Pedigree linkages within the collection were confirmed. Finally, accessions containing disease resistance-associated haplotypes for FaRCa1, FaRCg1, FaRMp1, and FaRPc2 were identified. These new core collections will allow breeders and researchers to more efficiently utilize the F. ×ananassa collection. The core collections and other accessions of interest can be requested for research from the USDA-ARS NCGR via the Germplasm Resources Information Network (https://www.ars-grin.gov/).

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Reference71 articles.

1. 2018 Crops Report;Food and Agriculture Organization of the United Nations,2018

2. Feeding the future;McCouch;Nature,2013

3. Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system;Byrne;Crop Sci,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3