Drought weakens the positive effect of plant diversity on community biomass

Author:

Hou Yanhui1,Li Xiaona1,Hu Yanxia1,Lu Xuwei1,Ma Yue12,Li Wenmin1,Lü Xiran13,Li Zimo14,Bai Yaxuan14,Wang Chao1ORCID

Affiliation:

1. Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China

2. Shanxi Agricultural University College of Grassland Science, , Jinzhong 030801 , China

3. Henan Agricultural University College of Landscape Architecture and Art, , Zhengzhou 450002 , China

4. Hebei North University College of Agriculture and Forestry, , Zhangjiakou 075000 , China

Abstract

Abstract Drought can greatly impact the biodiversity of an ecosystem and play a crucial role in regulating its functioning. However, the specific mechanisms by which drought mediate the biodiversity effect (BE) on community biomass in above- and belowground through functional traits remain poorly understood. Here, we conducted a common garden experiment in a greenhouse, which included two plant species richness levels and two water addition levels, to analyze the effects of biodiversity on aboveground biomass (AGB), belowground biomass (BGB) and total biomass (TB), and to quantify the relationship between BEs and functional traits under drought conditions. Our analysis focused on partitioning BEs into above- and belowground complementarity effect (CE) and selection effect (SE) at the species level, which allowed us to better understand the impacts of biodiversity on community biomass and the underlying mechanisms. Our results showed that plant species richness stimulated AGB, BGB and TB through CEs. Drought decreased AGB, BGB and TB, simultaneously. In addition, the aboveground CE was positively associated with the variation in plant height. SEs in above- and belowground were negatively correlated with the community mean plant height and root length, respectively. Furthermore, drought weakened the aboveground CE by decreasing variation in plant height, resulting in a reduction in AGB and TB. Our findings demonstrate that the complementarity of species is an important regulator of community biomass in above- and belowground, the dynamics of biomass under environmental stress are associated with the response of sensitive compartments.

Funder

Natural Science Foundation of Beijing Municipality

Beijing Academy of Agricultural and Forestry Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3