Species asynchrony maintains community stability under different warming conditions

Author:

Jiang Qianxin12,Zhu Juntao13,Shi Peili1,He Yunlong1,Zhang Yangjian123,Yan Jun4,Xie Wendong4,Zong Ning1,Hou Ge1,Shen Ruonan12,Zheng Jiahe12

Affiliation:

1. Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , Beijing 100101 , China

2. College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100190 , China

3. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences , Beijing 100101 , China

4. Nagqu Agricultural and Animal Husbandry Science and Technology Research and Promotion Center , Nagqu 852000 , China

Abstract

Abstract Asymmetric seasonal warming, characterized by more pronounced temperature increases in winter than in summer, has become a critical feature of global warming, especially in cold and high-altitude regions. Previous studies have primarily focused on year-round warming, while comparatively less attention was paid to winter warming. However, a significant knowledge gap exists regarding the impacts of winter warming on ecosystem functions. To address this, we conducted an 8-year manipulated warming experiment in an alpine grassland on the Tibetan Plateau, employing three treatments: no warming, year-round warming and winter warming. We found that neither year-round warming nor winter warming significantly alters species richness at the community level. Notably, community biomass stability was maintained via species asynchrony. However, warming exerted significant effects on the plant abundance groups (dominant, common and rare species). Specifically, winter warming enhanced the stability of dominant species by increasing species asynchrony of dominant species, as the compensatory dynamics occurred between the grass and forbs. In contrast, year-round warming reduced the stability of common species, correlated with an increase in species richness and a decline in asynchrony among common species. Thus, our study underscores the capacity of alpine grassland to maintain community biomass stability via asynchrony dynamics of species under different warming conditions, although the stability of different abundance groups would be changed. Importantly, our results provide valuable insights for understanding the alpine grassland ecosystem on the Tibetan Plateau.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Major Science and Technology Projects in Tibet

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3