Differential phenological responses to temperature among various stages of spring vegetation green-up

Author:

Jiang Nan1,Shen Miaogen1,Yang Zhiyong2

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University , Beijing 100875 , China

2. Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing 100101 , China

Abstract

Abstract Vegetation green-up is occurring earlier due to climate warming across the Northern Hemisphere, with substantial influences on ecosystems. However, it is unclear whether temperature responses differ among various green-up stages. Using high-temporal-resolution satellite data of vegetation greenness and averaging over northern vegetation (30–75° N), we found the negative interannual partial correlation between the middle green-up stage timing (50% greenness increase in spring–summer) and temperature (RP = −0.73) was stronger than those for the onset (15% increase, RP = −0.65) and end (90% increase, RP = −0.52) of green-up during 2000–2022. Spatially, at high latitudes, the middle green-up stage showed stronger temperature responses than the onset, associated with greater low-temperature constraints and stronger control of snowmelt on green-up onset as well as greater spring frost risk. At middle latitudes, correlations with temperature were similar between the onset and middle stages of green-up, except for grasslands of the Mongolian Plateau and interior western USA, where correlations with temperature were weaker for the middle stage due to water limitation. In contrast, the end of the green-up showed weaker temperature responses than the middle due to insufficient water and high climatic temperature during the end of the green-up in most of the study region, except for cold regions in the interior western USA, western Russia and the Tibetan Plateau, where temperature was still a main driver during end of green-up. Our findings underscore the differences in temperature responses among green-up stages, which alters the temporal alignment between plants and environmental resources.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Top-Notch Young Talents Program of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3