Effects of environment and genotype-by-environment interaction on phenotype of Rorippa elata (Brassicaceae), an endemic alpine plant in the Hengduan mountains

Author:

Du Zhi-Qiang12ORCID,Xing Yao-Wu13ORCID,Han Ting-Shen13ORCID

Affiliation:

1. Chinese Academy of Sciences CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, , Mengla 666303 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

3. Chinese Academy of Sciences State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, , Mengla 666303 , China

Abstract

Abstract Global climate change poses a severe threat to mountain biodiversity. Phenotypic plasticity and local adaptation are two common strategies for alpine plant to cope with such change. They may facilitate organismal adaptation to contrasting environments, depending on the influences of the environment or genotype or their interacted effects. In this study, we use an endemic alpine plant (Rorippa elata) in the Hengduan mountains (HDM) to unravel its phenotypic basis of adaptation strategy and evaluate the relative contributions of environment and genotype to its phenotype. We transplanted 37 genotypes of R. elata into two common gardens across low and high elevations (2800 vs. 3800 m) during 2021–2022. Nine fitness-related traits were measured, including flowering probability and glucosinolates (GS) content. We estimated the environmental or genotypic contributions to the phenotype and identified the main environmental components. Our results revealed that both environment and genotype-by-environment interactions contributed to the phenotypes of R. elata. Latitudinal heterogeneity was identified as a key factor that explained 24% of the total phenotypic variation. In particular, genotypes of the northern HDM showed significantly higher plasticity in flowering probability than those of the southern HDM. Furthermore, within the southern HDM, GS content indicated local adaptation to herbivory stresses for R. elata genotypes along elevations. In conclusion, our results suggest that R. elata may have adapted to the alpine environment through species-level plasticity or regional-level local adaptation. These processes were shaped by either complex topography or interactions between genotype and mountain environments. Our study provides empirical evidence on the adaptation of alpine plants.

Funder

National Natural Science Foundation of China

NSFC-ERC International Cooperation and Exchange Programs

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3