Nitrogen addition increased resistance of resident plant community to Solidago canadensis invasion by altering allelopathic effect

Author:

Cai Jing-Fang12,Sun Kai12,Li Lin12,A Si-Ha12,Shen Yi-Luan12,Li Hong-Li12

Affiliation:

1. School of Ecology and Nature Conservation, Beijing Forestry University , Beijing 100083 , China

2. The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, Beijing Forestry University , Beijing 100083 , China

Abstract

Abstract Allelopathy plays an important role in the interaction between invasive and resident plants. Atmospheric nitrogen (N) deposition has become a global problem, but it is unclear whether N enrichment affects the interaction between invasive and resident plants by affecting their allelopathy. Thus, we performed a greenhouse experiment in which the resident plant community was grown under two levels of invasion by S. canadensis (invasion vs. no invasion) and fully crossed with two levels of allelopathy (with or without adding activated carbon) and two levels of N addition (with or without). The resident plant communities were constructed with eight herbaceous species that often co-occur with S. canadensis. The results showed that both allelopathy of S. canadensis and the resident plants had obvious positive effects on their own growth. Nitrogen addition had more obvious positive effects on the resident plants under invasion than those that were not invaded. Moreover, N addition also altered the allelopathy of resident plants. Specifically, N addition improved the allelopathy of resident plants when they were invaded but decreased the allelopathy of resident plants when they grew alone. Although nitrogen addition had no obvious effect on S. canadensis, it reduced the allelopathy of S. canadensis. These results suggest that N addition could improve the resistance of resident plants to invasion by improving the allelopathy of resident plants and reducing the allelopathy of S. canadensis. These findings provide a scientific basis to manage and control the S. canadensis invasion.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Major Science and Technology Program for Water Pollution Control and Treatment

Beijing Municipal Education Commission

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3