Role of chromatin modification and remodeling in stem cell regulation and meristem maintenance in Arabidopsis

Author:

Singh Sharmila1,Singh Alka1,Singh Archita1,Mahima 1,Yadav Sandeep1ORCID,Bajaj Ishita1,Kumar Shailendra2,Jain Ajay3,Sarkar Ananda K1ORCID

Affiliation:

1. National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India

2. Amity School of Architecture and Planning, Amity University, Kant Kalwar, Rajasthan, India

3. Amity Institute of Biotechnology, Amity University, Kant Kalwar, Rajasthan, India

Abstract

Abstract In higher plants, pluripotent stem cells reside in the specialized microenvironment called stem cell niches (SCNs) harbored at the shoot apical meristem (SAM) and root apical meristem (RAM), which give rise to the aerial and underground parts of a plant, respectively. The model plant Arabidopsis thaliana (Arabidopsis) has been extensively studied to decipher the intricate regulatory mechanisms involving some key transcriptions factors and phytohormones that play pivotal roles in stem cell homeostasis, meristem maintenance, and organ formation. However, there is increasing evidence to show the epigenetic regulation of the chromatin architecture, gene expression exerting an influence on an innate balance between the self-renewal of stem cells, and differentiation of the progeny cells to a specific tissue type or organ. Post-translational histone modifications, ATP-dependent chromatin remodeling, and chromatin assembly/disassembly are some of the key features involved in the modulation of chromatin architecture. Here, we discuss the major epigenetic regulators and illustrate their roles in the regulation of stem cell activity, meristem maintenance, and related organ patterning in Arabidopsis.

Funder

Science and Engineering Research Board

Department of Science and Technology

Government of India

National Institute of Plant Genome Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3