Determination of Residual Carbamate, Organophosphate, and Phenyl Urea Pesticides in Drinking and Surface Water by High-Performance Liquid Chromatography/Tandem Mass Spectrometry

Author:

Hao Chunyan1,Nguyen Bick1,Zhao Xiaoming1,Chen Ernie1,Yang Paul1

Affiliation:

1. Ontario Ministry of Environment, Laboratory Services Branch, Etobicoke, ON, Canada M9P 3V6

Abstract

Abstract Methods using SPE followed by HPLC/MS/MS analysis were developed and validated for the determination of 39 pesticides in different aquatic environmental matrixes. The target pesticides included 12 carbamates, 15 organophosphates, and 12 phenyl ureas, out of which 16 are regulated in North America. Method detection limits were in the low ng/L range using the U.S. Environmental Protection Agency's protocol and multiple reaction monitoring (MRM) data acquisition, meeting the regulatory needs in the United States, Canada, and European Union. Isotope-labeled compounds were used as injection internal standards, as well as method surrogates to improve the data quality. QC/QA data (e.g., method recovery and within-run and between-run method precision) derived from multiyear monitoring activities were used to demonstrate method ruggedness. The same QC/QA data also showed that the method exerted no obvious matrix effect on the target analytes. Parameters that affect method performance, such as preservatives, pH values, sample storage time, and sample extract storage time, were also studied in detail. Accredited by the Canadian Association for Laboratory Accreditation and licensed by the Ontario government for drinking water analysis, these methods have been applied to the analysis of drinking water, ground water, and surface water samples collected in the province of Ontario, Canada, to ensure the pristine nature of Ontario's aquatic environment. Using the scheduled MRM (sMRM) data acquisition algorithm, it was demonstrated that sMRM improved the S/N of extracted ion chromatograms by at least two- to six-fold and, therefore, enhanced the short- and long-term instrument precision, demonstrated the ability to offer high throughput multiresidue analysis, and allowed the use of two MRM transitions for each compound to achieve higher confidence for compound identification.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3