Spatio-Temporal Modeling and Competition Dynamics in Forest Tillage Experiments on Early Growth of Eucalyptus grandis L.

Author:

González Barrios Pablo1ORCID,Borges Alejandra1,Terra José2,Pérez Bidegain Mario3,Gutiérrez Lucía4ORCID

Affiliation:

1. Statistics Department, Facultad de Agronomía, Universidad de la Republica, Uruguay

2. National Agricultural Research Institute (INIA), Uruguay

3. Soils Department, Facultad de Agronomía, Universidad de la Republica, Uruguay

4. Department of Agronomy, University of Wisconsin, Madison

Abstract

Abstract Forest tillage experiments regularly use long-term evaluations of large plots creating temporal and/or spatial correlations among observations. Not modeling these correlations could compromise treatment comparisons. The aim of this study was to evaluate the effect of modeling spatio-temporal (ST) variability in forest tillage experiments. We used different strategies that incorporate spatial and/or temporal correlations in the evaluation of tillage intensity effect in initial Eucalyptus growth as well as evaluate the effect of intraplot mortality and competition dynamics. Three tillage intensities in two contrasting soil conditions were compared for tree height and wood volume. Additionally, we compared the use of three individual growth curves for plant height to evaluate the time needed to reach 2 m in height (T2m). We modeled the spatial correlation of T2m using mixed models. In both sites, ST models were superior for plant height and wood volume per hectare, whereas for individual-tree wood volume, temporal models were superior. Pit planting always had a lower performance than disk harrowing and subsoiler, which behaved similarly. The competition dynamics within the plot because of tree mortality was affected by treatments and site. Modeling ST variability is key to improving treatment comparisons in forest experiments.

Publisher

Oxford University Press (OUP)

Subject

Ecological Modeling,Ecology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3