Prediction of Freeze Damage and Minimum Winter Temperature of the Seed Source of Loblolly Pine Seedlings Using Hyperspectral Imaging

Author:

Lu Yuzhen1ORCID,Walker Trevor D2ORCID,Acosta Juan J2ORCID,Young Sierra3ORCID,Pandey Piyush23,Heine Austin J2ORCID,Payn Kitt G2ORCID

Affiliation:

1. Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA

2. Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA

3. Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA

Abstract

Abstract The most important climatic variable influencing growth and survival of loblolly pine is the yearly average minimum winter temperature (MWT) at the seed source origin, and it is used to guide the transfer of improved seed lots throughout the species’ distribution. This study presents a novel approach for the assessment of freeze-induced damage and prediction of MWT at seed source origin of loblolly pine seedlings using hyperspectral imaging. A population comprising 98 seed lots representing a wide range of MWT at seed source origin was subjected to an artificial freeze event. The visual assessment of freeze damage and MWT were evaluated at the family level and modeled with hyperspectral image data combined with chemometric techniques. Hyperspectral scanning of the seedlings was conducted prior to the freeze event and on four occasions periodically after the freeze. A significant relationship (R2 = 0.33; p < .001) between freeze damage and MWT was observed. Prediction accuracies of freeze damage and MWT based on hyperspectral data varied among seedling portions (full-length, top, middle, and bottom portion of aboveground material) and scanning dates. Models based on the top portion were the most predictive of both freeze damage and MWT. The highest prediction accuracy of MWT [RPD (ratio of prediction to deviation) = 2.12, R2 = 0.78] was achieved using hyperspectral data obtained prior to the freeze event. Adoption of this assessment method would greatly facilitate the characterization and deployment of well-adapted loblolly pine families across the landscape.

Funder

USDA National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Ecological Modelling,Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3