The Effects of Rehabilitation Treatments on Landscape Function Within a Softwood Plantation After Fire: Implications for Catchment Management

Author:

Liu Jiyu12ORCID,Colloff Matthew J1ORCID,Freudenberger David1ORCID

Affiliation:

1. Fenner School of Environment and Society, Australian National University, Canberra, Australia

2. School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia

Abstract

AbstractThere is global interest in enhancing the ecosystem services provided by landscapes and catchments dominated by plantation (monoculture) forestry. Partial reversion of plantations to locally native species (reforestation) is one option. However, the ecological outcomes of this kind of plantation reversion are poorly known. The partial reforestation of a pine plantation (Pinus radiata D. Don 1836) in the Australian Capital Territory with native species following a wildfire provides a rare case study of the environmental consequences of such a reversion. We estimated changes in landscape functionality by measuring indices of water infiltration, nutrient cycling, and soil surface stability across five landscape-scale treatments after the 2003 Lower Cotter Catchment bushfire: (1) natural regeneration of a native forest burned in 2003, (2) burned pine plantation replanted to pines, (3) burned plantation replanted to native trees and shrubs, (4) burned plantation allowed to naturally regenerate, and (5) forest roads rehabilitated by planting native trees and shrubs. At 14 years after the fire, we found that the regenerating native forest had the highest indices of water infiltration, nutrient cycling, and soil surface stability. The burned pine plantation that was replanted to pines in 2005 had indices of functionality that were higher than the burned plantation areas that were either allowed to naturally regenerate to native eucalypt forest or were planted with native forest species. These two types of native forest rehabilitation treatments had only minor differences in functionality. The rehabilitated closed roads were the least functional. We found that a pine plantation at the closed canopy stage can supply regulating services of water infiltration, nutrient cycling, and soil surface stability comparable to a native forest at a similar stage postfire; however, a significant limitation of the plantation was its low ecosystem resilience. It required massive soil disturbance to replant postfire and long-term maintenance of an extensive unpaved road network. The active or passive rehabilitation of native forest is justified to improve the natural resilience to wildfire. However, this rehabilitation of a native forest following use as a pine plantation is a multidecade process in this relatively low-rainfall environment.Study ImplicationsThe 2003 Canberra bushfire destroyed the entire pine plantation at Lower Cotter Catchment, a water catchment in Australian Capital Territory, but also provided an opportunity to examine and quantify changes in ecosystem functions with different restoration treatments. Landscape Function Analysis, including three indices (water infiltration, nutrient cycling, and soil surface stability), was used in this study. Findings suggest that both native eucalyptus forests and pine plantations recovered to relatively high levels of functionality within just 15 years after the bushfire, compared with all other restoration treatments, but plantations of Pinus radiata are not resilient to wildfire from a commercial perspective. These results help to justify the controversial decision to restore the majority of the catchment with native species in 2005. However, long-term monitoring is needed to determine how long it will take for the replanted and natural regeneration treatments to approach the functionality of the native forest.

Publisher

Oxford University Press (OUP)

Subject

Ecological Modeling,Ecology,Forestry

Reference36 articles.

1. Restoring and conserving rare native ecosystems: A 14-year plantation removal experiment;Abellaa;Biol. Conserv.,2017

2. Assessing rangeland capability in Iran using landscape function indices based on soil surface attributes;Ata Rezaei;J. Arid Environ.,2006

3. Plantation forests and biodiversity: Oxymoron or opportunity?;Brockerhoff;Biodivers. Conserv,2008

4. The composition and spatial arrangement of natural regeneration in a disturbed landscape;Brown,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3