Modeling Self-Thinning Patterns in Loblolly Pine with Provenance and Family Effects

Author:

Walker Trevor D1ORCID,Bullock Bronson P2,Smith Benjamin C3ORCID,McKeand Steven E1ORCID

Affiliation:

1. Cooperative Tree Improvement Program, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC

2. Plantation Management Research Cooperative, Warnell School of Forest and Natural Resources, University of Georgia, Athens, GA

3. Forest Restoration Alliance, Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC

Abstract

Abstract Size-density trajectories and self-thinning boundary lines were modeled for two diverse provenances of Pinus taeda L. and five open-pollinated families within each provenance. The data used come from a single site with replicated 64-tree block plots measured through age 25 years. The effects of provenance and family were tested using linear and nonlinear mixed-effects self-thinning models. The drought-hardy Lost Pines of Texas provenance displayed a greater predicted carrying capacity (almost 200 more trees per hectare at reference diameter 25.4 cm) and had a more abrupt approach to the self-thinning line than the widely planted Atlantic Coastal Plain provenance. However, the growth rate of the Lost Pines of Texas provenance was considerably slower and stem form was unacceptable for timber production. Families from the Atlantic Coastal Plain differed in their maximum stand density index predictions (from 1,118 to 1,282 trees per hectare at the reference diameter), suggesting there is an opportunity for artificial selection to change maximum stand density index in this breeding population of loblolly pine. A novel method for predicting the self-thinning boundary line using random effects inherent to the experimental design is presented and recommended for repeated measures data. Experimental design considerations for evaluating genetic differences in self-thinning are discussed. Study Implications Genetic improvement of growth rate in forest trees has resulted in large gains in plantation productivity, but the effect on carrying capacity has not been addressed. This study indicated that artificial selection on tolerance to competition in the widely planted Atlantic Coastal Plain provenance of loblolly pine can potentially increase harvest yield without sacrificing growth rate. The drought-hardy Lost Pines of Texas provenance displayed greater carrying capacity but had poor stem form and slow growth. The Lost Pines provenance may be attractive for aboveground carbon sequestration, since it sustained substantially more biomass because of greater maximum stand density and denser wood.

Funder

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Ecological Modelling,Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3