Alternate Growth Forms Can Protect Climate-Threatened Trees from Freezing Stressors

Author:

Buma Brian12ORCID

Affiliation:

1. Department of Integrative Biology, University of Colorado , Denver, Colorado , USA

2. Environmental Defense Fund , Boulder, Colorado , USA

Abstract

Abstract Climate change creates a variety of novel stressors for species, such as a decline in snowpack. Loss of snow has many impacts, including the loss of thermal insulation of soils. Winter/spring freezing of soils has been tied to forest mass mortality in multiple locations around the world. Many species, however, can take alternative growth forms, such as tall tree forms and short shrub-like forms. Shrub-forms may provide a unique protection from the snow loss phenomenon by providing a similar thermal insulation as snowpack. That hypothesis is tested here using yellow-cedar, a species undergoing mass mortality due to snow loss. Temperature loggers were placed under both tree- and shrub-form cedars, including areas where the species was experimentally removed. The number of soil freezing days was high in open areas, areas of tree mortality, and where the shrub-form was removed, but was almost zero in areas where the shrub-form was left intact. This suggests that growth-form temperature moderation is possible and may provide an important resistance to the mortality mechanism. In other areas around the world where snow loss is resulting in soil freezing and mortality, growth forms should be investigated as a potential moderating mechanism for this particular climate change stress.

Funder

U.S. Department of Agriculture

U.S. Forest Service

Publisher

Oxford University Press (OUP)

Subject

Ecological Modeling,Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3