Quantile Regression Analysis of the Modifying Industrial Operations Protocol’s Impact on Forestry Fire Incremental Growth

Author:

Granville Kevin1ORCID,Cao Shi Yu2,Woolford Douglas G2,McFayden Colin B3

Affiliation:

1. Department of Mathematics and Statistics, University of Windsor , Windsor, ON , Canada

2. Department of Statistical and Actuarial Sciences, University of Western Ontario , London, ON , Canada

3. Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada , Sault Ste. Marie, ON , Canada

Abstract

Abstract Governmental legislation, regulations, and policies are used to prevent and mitigate the negative impact of human-caused wildland fires. In Ontario, Canada, the Modifying Industrial Operations Protocol (MIOP) aims to manage and limit the risk associated with fires ignited because of industrial forestry operations while maintaining flexibility in terms of daily restrictions. The MIOP was enacted in Ontario in 2008, when it replaced the Woods Modifications Guidelines, which had been in effect since 1989. We use quantile regression to quantify how the distribution of incremental growth has changed when contrasting three prevention time periods (MIOP, Woods Guidelines, Pre-Woods) while controlling for several possible confounding variables that drive fire growth. We analyze data of industrial forestry-caused wildland fires ignited on Crown forest land in Ontario from 1976 to 2019. This type of retrospective analysis is important for monitoring the performance of Ontario’s prevention and mitigation efforts and providing insight for the future, especially in a changing environment. Our findings provide evidence of MIOP succeeding at its goal of mitigating the negative impact of ignited industrial forestry fires when compared against previous regulations.

Publisher

Oxford University Press (OUP)

Subject

Ecological Modeling,Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3