Why is early-onset atrial fibrillation uncommon in patients with Duchenne muscular dystrophy? Insights from the mdx mouse

Author:

Nguyen My-Nhan1,Hooper Charlotte1,Stefanini Matilde1,Vrellaku Besarte1,Carnicer Ricardo1ORCID,Wood Matthew J2,Simon Jillian N1,Casadei Barbara1ORCID

Affiliation:

1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford , L6 West Wing, Oxford OX3 9DU , UK

2. Department of Paediatrics and Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford , Oxford , UK

Abstract

Abstract Aims A reduction in both dystrophin and neuronal nitric oxide synthase (NOS1) secondary to microRNA-31 (miR-31) up-regulation contributes to the atrial electrical remodelling that underpins human and experimental atrial fibrillation (AF). In contrast, patients with Duchenne muscular dystrophy (DMD), who lack dystrophin and NOS1 and, at least in the skeletal muscle, have raised miR-31 expression, do not have increase susceptibility to AF in the absence of left ventricular (LV) dysfunction. Here, we investigated whether dystrophin deficiency is also associated with atrial up-regulation of miR-31, loss of NOS1 protein, and increased AF susceptibility in young mdx mice. Methods and results Echocardiography showed normal cardiac structure and function in 12–13 weeks mdx mice, with no indication by assay of hydroxyproline that atrial fibrosis had developed. The absence of dystrophin in mdx mice was accompanied by an overall reduction in syntrophin and a lower NOS1 protein content in the skeletal muscle and in the left atrial and ventricular myocardium, with the latter occurring alongside reduced Nos1 transcript levels (exons 1–2 by quantitative polymerase chain reaction) and an increase in NOS1 polyubiquitination [assessed using tandem polyubiquitination pulldowns; P < 0.05 vs. wild type (WT)]. Neither the up-regulation of miR-31 nor the substantial reduction in NOS activity observed in the skeletal muscle was present in the atrial tissue of mdx mice. At difference with the skeletal muscle, the mdx atrial myocardium showed a reduction in the constitutive NOS inhibitor, caveolin-1, coupled with an increase in NOS3 serine1177 phosphorylation, in the absence of differences in the protein content of other NOS isoforms or in the relative expression NOS1 splice variants. In line with these findings, transoesophageal atrial burst pacing revealed no difference in AF susceptibility between mdx mice and their WT littermates. Conclusion Dystrophin depletion is not associated with atrial miR-31 up-regulation, reduced NOS activity, or increased AF susceptibility in the mdx mouse. Compared with the skeletal muscle, the milder atrial biochemical phenotype may explain why patients with DMD do not exhibit a higher prevalence of atrial arrhythmias despite a reduction in NOS1 content.

Funder

British Heart Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Caveolin and NOS in the Development of Muscular Dystrophy;International Journal of Molecular Sciences;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3