Diagnostic Efficiency of Serum-Based Infrared Spectroscopy in Detecting Breast Cancer: A Meta-Analysis

Author:

Pabico Louise Julie1,Jaron Jennica Naiomi1,Mosqueda Marc Erickson1,Wu Jorge Jaesen1,Tiongco Raphael Enrique2ORCID,Albano Pia Marie13

Affiliation:

1. Department of Biological Sciences, College of Science, University of Santo Tomas , Manila , Philippines

2. Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation , Angeles City , Philippines

3. Research Center for the Natural and Applied Sciences, University of Santo Tomas , Manila , Philippines

Abstract

Abstract Background The advancement of Fourier transform infrared (FTIR) spectroscopy as a potential diagnostic tool in the clinical setting has been studied over the years, particularly its application in cancer diagnostics. Objective To summarize previous research on FTIR spectroscopy in detecting breast cancer using serum specimens. Methods Related literature was searched and screened from various databases. Relevant data were then extracted, tabulated, and analyzed using Meta-DiSc 1.4 software. Results Sensitivity and specificity rates were 90% to 100% and 80% to 95%, respectively. The area under the receiver operating characteristic curve was at 0.9729, indicating that serum analysis via FTIR spectroscopy can accurately discriminate between healthy individuals and patients with breast cancer. Conclusion Overall, FTIR spectroscopy for breast cancer diagnosis using serum specimens shows promising results. However, further studies are still needed to validate these claims.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3