Evolutionary analyses of emerging GII.2[P16] and GII.4 Sydney [P16] noroviruses

Author:

Zheng Guo-li1,Zhu Zheng-xi1,Cui Jia-le1,Yu Jie-mei1

Affiliation:

1. College of Life Sciences and Bioengineering, Beijing Jiaotong University, 3 Shangyuan Residency, Hai-Dian District, Beijing 100044, China

Abstract

Abstract GII.2[P16] and GII.4 Sydney [P16] are currently the two predominant norovirus genotypes. This study sought to clarify their evolutionary patterns by analyzing the major capsid VP1 and RNA-dependent RNA polymerase (RdRp) genes. Sequence diversities were analyzed at both nucleotide and amino acid levels. Selective pressures were evaluated with the Hyphy package in different models. Phylogenetic trees were constructed by the maximum likelihood method from full VP1 sequences, and evolutionary rates were estimated by the Bayesian Markov Chain Monte Carlo approach. The results showed that (1) several groups of tightly linked mutations between the RdRp and VP1 genes were detected in the GII.2[P16] and GII.4[P16] noroviruses, and most of these mutations were synonymous, which may lead to a better viral fitness to the host; (2) although the pattern of having new GII.4 variants every 2–4 years has been broken, both the pre- and the post-2015 Sydney VP1 had comparable evolutionary rates to previously epidemic GII.4 variants, and half of the major antigenic sites on GII.4 Sydney had residue substitutions and several caused obvious changes in the carbohydrate-binding surface that may potentially alter the property of the virus; and (3) GII.4 Sydney variants during 2018–21 showed geographical specificity in East Asia, South Asia, and North America; the antigenic sites of GII.2 are strictly conserved, but the GII.2 VP1 chronologically evolved into nine different sublineages over time, with sublineage IX being the most prevalent one since 2018. This study suggested that both VP1 and RdRp of the GII.2[P16] and GII.4 Sydney [P16] noroviruses exhibited different evolutionary directions. GII.4[P16] is likely to generate potential novel epidemic variants by accumulating mutations in the P2 domain, similar to previously epidemic GII.4 variants, while GII.2[P16] has conserved predicted antigenicity and may evolve by changing the properties of nonstructural proteins, such as polymerase replicational fidelity and efficiency. This study expands the understanding of the evolutionary dynamics of GII.2[P16] and GII.4[P16] noroviruses and may predict the emergence of new variants.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Virology,Microbiology

Reference46 articles.

1. Global Prevalence of Norovirus in Cases of Gastroenteritis: A Systematic Review and Meta-analysis;Ahmed;The LancetInfectious Diseases,2014

2. Genetic Analysis of Reemerging GII.P16-GII.2 Noroviruses in 2016–2017 in China;Ao;The Journal of Infectious Diseases,2018

3. Norovirus GII.P16/GII.2-Associated Gastroenteritis, China, 2016;Emerging Infectious Diseases,2017

4. Norovirus Polymerase Fidelity Contributes to Viral Transmission in Vivo;Arias;mSphere,2016

5. Emerging Novel GII.P16 Noroviruses Associated with Multiple Capsid Genotypes;Barclay;Viruses,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3