Are Fatty Acids Gluconeogenic Precursors?

Author:

Green Michael H1ORCID

Affiliation:

1. Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, USA

Abstract

ABSTRACTIt is widely accepted that the tricarboxylic acid (TCA) cycle is a critical partner for gluconeogenesis (GNG) in hepatocytes. Although researchers in the 1950s showed, using radiolabeled long-chain fatty acids, that acetate derived from fatty acid β-oxidation contributes carbon to glucose, fatty acids are not included on lists of gluconeogenic precursors in many textbooks of biochemistry and nutritional biochemistry. Here, by following the flow of carbon atoms through the mitochondrial TCA cycle and into cytosolic GNG, it is shown that carbons in acetyl-CoA derived from fatty acid β-oxidation will be found in glucose. Specifically, it is evident that, after the condensation of acetyl-CoA and oxaloacetate (OAA) to make citrate at the start of the TCA cycle, the 2 carbons lost from the cycle as carbon dioxide come from OAA, not acetyl-CoA. Carbons from acetyl-CoA are retained as the cycle progresses toward malate, and when malate exits the mitochondrion for GNG, carbons that originated in acetyl-CoA and OAA are found to contribute equally to glucose. With influx of other critical precursors into the TCA cycle and efflux of malate into the cytosol for GNG, the TCA cycle is in balance. During fasting-induced GNG, there is a net gain of glucose in glucogenic cells; however, the fact that there is no net gain in the TCA cycle is irrelevant as far as precursors are concerned. Given the physiological importance of fat as a source of reserve energy, and knowing that some cell types rely on glucose as their primary supplier of energy, a role for fatty acids in glucose production aligns both with intuition and with evidence provided by a careful look at the biochemistry and older isotope studies. Hopefully, subsequent editions of textbooks will list fatty acids among the gluconeogenic precursors.

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3