The Transposable Elements of the Drosophila serrata Reference Panel

Author:

Tiedeman Zachery1,Signor Sarah1ORCID

Affiliation:

1. Department of Biological Sciences, North Dakota State University, Fargo, USA

Abstract

Abstract Transposable elements (TEs) are an important component of the complex genomic ecosystem. Understanding the tempo and mode of TE proliferation, that is whether it is in maintained in transposition selection balance, or is induced periodically by environmental stress or other factors, is important for understanding the evolution of organismal genomes through time. Although TEs have been characterized in individuals or limited samples, a true understanding of the population genetics of TEs, and therefore the tempo and mode of transposition, is still lacking. Here, we characterize the TE landscape in an important model Drosophila, Drosophila serrata using the D. serrata reference panel, which is comprised of 102 sequenced inbred genotypes. We annotate the families of TEs in the D. serrata genome and investigate variation in TE copy number between genotypes. We find that many TEs have low copy number in the population, but this varies by family and includes a single TE making up to 50% of the genome content of TEs. We find that some TEs proliferate in particular genotypes compared with population levels. In addition, we characterize variation in each TE family allowing copy number to vary in each genotype and find that some TEs have diversified very little between individuals suggesting recent spread. TEs are important sources of spontaneous mutations in Drosophila, making up a large fraction of the total number of mutations in particular genotypes. Understanding the dynamics of TEs within populations will be an important step toward characterizing the origin of variation within and between species.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3