Sharp Increase of Problematic Mitogenomes of Birds: Causes, Consequences, and Remedies

Author:

Sangster George12ORCID,Luksenburg Jolanda A34

Affiliation:

1. Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden

2. Naturalis Biodiversity Center, Leiden, The Netherlands

3. Institute of Environmental Sciences, Leiden University, The Netherlands

4. Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA

Abstract

Abstract Authentic DNA sequences are crucial for reliable evolutionary inference. Concerns about the identification of DNA sequences have been voiced several times in the past but few quantitative studies exist. Mitogenomes play important roles in phylogenetics, phylogeography, population genetics, and DNA identification. However, the large number of mitogenomes being published routinely, often in brief data papers, has raised questions about their authenticity. In this study, we quantify problematic mitogenomes of birds and their reusage in other papers. Of 1,876 complete or partial mitogenomes of birds published until January 1, 2020, the authenticity of 1,559 could be assessed with sequences of conspecifics. Of these, 78 (5.0%) were found to be problematic, including 45 curated reference sequences. Problems were due to misidentification (33), chimeras of two or three species (23), sequencing errors/numts (18), incorrect sequence assembly (1), mislabeling at GenBank but not in the final paper (2), or vice versa (1). The number of problematic mitogenomes has increased sharply since 2012. Worryingly, these problematic sequences have been reused 436 times in other papers, including 385 times in phylogenies. No less than 53% of all mitogenomic phylogenies/networks published until January 1, 2020 included at least one problematic mitogenome. Problematic mitogenomes have resulted in incorrect phylogenetic hypotheses and proposals for unwarranted taxonomic revision, and may have compromised comparative analyses and measurements of divergence times. Our results indicate that a major upgrade of quality control measures is warranted. We propose a comprehensive set of measures that may serve as a new standard for publishing mitogenome sequences.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3