Affiliation:
1. Department of Entomology, Cornell University, Ithaca, New York, USA
2. Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
Abstract
Abstract
Annotated genome sequences provide valuable insight into the functional capabilities of members of microbial communities. Nevertheless, most studies on the microbiome in animal guts use metagenomic data, hampering the assignment of genes to specific microbial taxa. Here, we make use of the readily culturable bacterial communities in the gut of the fruit fly Drosophila melanogaster to obtain draft genome sequences for 96 isolates from wild flies. These include 81 new de novo assembled genomes, assigned to three orders (Enterobacterales, Lactobacillales, and Rhodospirillales) with 80% of strains identified to species level using average nucleotide identity and phylogenomic reconstruction. Based on annotations by the RAST pipeline, among-isolate variation in metabolic function partitioned strongly by bacterial order, particularly by amino acid metabolism (Rhodospirillales), fermentation, and nucleotide metabolism (Lactobacillales) and arginine, urea, and polyamine metabolism (Enterobacterales). Seven bacterial species, comprising 2–3 species in each order, were well-represented among the isolates and included ≥5 strains, permitting analysis of metabolic functions in the accessory genome (i.e., genes not present in every strain). Overall, the metabolic function in the accessory genome partitioned by bacterial order. Two species, Gluconobacter cerinus (Rhodospirillales) and Lactiplantibacillus plantarum (Lactobacillales) had large accessory genomes, and metabolic functions were dominated by amino acid metabolism (G. cerinus) and carbohydrate metabolism (La. plantarum). The patterns of variation in metabolic capabilities at multiple phylogenetic scales provide the basis for future studies of the ecological and evolutionary processes shaping the diversity of microorganisms associated with natural populations of Drosophila.
Publisher
Oxford University Press (OUP)
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Reference137 articles.
1. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster;Adair;ISME J,2018
2. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov;Adeolu;Int J Syst Evol Microbiol,2016
3. Resistance, resilience, and redundancy in microbial communities;Allison;Proc Natl Acad Sci U S A,2008
4. Nutrient factories: metabolic function of beneficial microorganisms associated with insects;Ankrah;Environ Microbiol,2018
5. Acetobacter oryzoeni sp. nov., isolated from Korean rice wine vinegar;Baek;Int J Syst Evol Microbiol,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献