Developmental Transcriptomics Reveals a Gene Network Driving Mimetic Color Variation in a Bumble Bee

Author:

Rahman Sarthok Rasique12,Terranova Tatiana1,Tian Li3,Hines Heather M14

Affiliation:

1. Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA

2. Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA

3. Department of Entomology, China Agricultural University, Beijing, China

4. Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA

Abstract

Abstract A major goal of evolutionary genetics and evo-devo is to understand how changes in genotype manifest as changes in phenotype. Bumble bees display remarkable color pattern diversity while converging onto numerous regional Müllerian mimicry patterns, thus enabling exploration of the genetic mechanisms underlying convergent phenotypic evolution. In western North America, multiple bumble bee species converge onto local mimicry patterns through parallel shifts of midabdominal segments from red to black. It was previously demonstrated that a Hox gene, Abd-B, is the key regulator of the phenotypic switch in one of these species, Bombus melanopygus, however, the mechanism by which Abd-B regulates color differentiation remains unclear. Using tissue/stage-specific transcriptomic analysis followed by qRT–PCR validation, this study reveals a suite of genes potentially involved downstream of Abd-B during color pattern differentiation. The data support differential genes expression of not only the first switch gene Abd-B, but also an intermediate developmental gene nubbin, and a whole suite of downstream melanin and redox genes that together reinforce the observed eumelanin (black)-pheomelanin (red) ratios. These include potential genes involved in the production of insect pheomelanins, a pigment until recently not thought to occur in insects and thus lacking known regulatory enzymes. The results enhance understanding of pigmentation gene networks involved in bumble bee color pattern development and diversification, while providing insights into how upstream regulators such as Hox genes interact with downstream morphogenic players to facilitate this adaptive phenotypic radiation.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3