Rapid Genomic Evolution Drives the Diversification of Male Reproductive Genes in Dung Beetles

Author:

Mrinalini 1,Koh Cho Yeow2,Puniamoorthy Nalini1

Affiliation:

1. Department of Biological Sciences, National University of Singapore, Singapore

2. Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Abstract

Abstract The molecular basis for the evolution of novel phenotypes is a central question in evolutionary biology. In recent years, dung beetles have emerged as models for novel trait evolution as they possess distinct precopulatory traits such as sexually dimorphic horns on their head and thorax. Here, we use functional and evolutionary genomics to investigate the origins and the evolution of postcopulatory reproductive traits in male dung beetles. Male ejaculates that underlie postcopulatory sexual selection are excellent candidates to study novel trait evolution as they are complex, fast evolving, and often highly divergent in insects. We assemble de novo transcriptomes of male accessory glands and testes of a widespread dung beetle, Catharsius molossus, and we perform an evolutionary analysis of closely and distantly related insect genomes. Our results show there is rapid innovation at the genomic level even among closely related dung beetles. Genomic expansion and contraction drive the divergence of male reproductive traits and their functions. The birth of scores of completely novel reproductive genes is reinforced by the recruitment of these genes for high expression in male reproductive tissues, especially in the accessory glands. We find that male accessory glands of C. molossus are specialized for secretory function and express female, egg, and embryo-related genes as well as serine protease inhibitors, whilst the testes are specialized for spermatogenesis and sperm function. Finally, we touch upon putative functions of these evolutionary novelties using structure-function analysis as these proteins bear no homology to any other known proteins.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3