De Novo Genome Assembly of the Electric Fish Brachyhypopomus occidentalis (Hypopomidae, Gymnotiformes)

Author:

Arias Carlos F123,Dikow Rebecca B2,McMillan W Owen3,De León Luis F134

Affiliation:

1. Department of Biology, University of Massachusetts, Boston, Massachusetts, USA

2. Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, District of Columbia, USA

3. Smithsonian Tropical Research Institute, Panamá, Panamá

4. Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panamá, Panamá

Abstract

Abstract The bluntnose knifefish Brachyhypopomus occidentalis is a primary freshwater fish from north-western South America and Lower Central America. Like other Gymnotiformes, it has an electric organ that generates electric discharges used for both communication and electrolocation. We assembled a high-quality reference genome sequence of B. occidentalis by combining Oxford Nanopore and 10X Genomics linked-reads technologies. We also describe its demographic history in the context of the rise of the Isthmus of Panama. The size of the assembled genome is 540.3 Mb with an N50 scaffold length of 5.4 Mb, which includes 93.8% complete, 0.7% fragmented, and 5.5% of missing vertebrate/Actinoterigie Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 11.04% of the genome, and 34,347 protein-coding genes were predicted, of which 23,935 have been functionally annotated. Demographic analysis suggests a rapid effective population expansion between 3 and 5 Myr, corresponding to the final closure of the Isthmus of Panama (2.8–3.5 Myr). This event was followed by a sudden and constant population decline during the last 1 Myr, likely associated with strong shifts in both precipitation and sea level during the Pleistocene glacial-interglacial cycles. The de novo genome assembly of B. occidentalis will provide novel insights into the molecular basis of both electric signal productions and detection and will be fundamental for understanding the processes that have shaped the diversity of Neotropical freshwater environments.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3