Glycan array analysis of Pholiota squarrosa lectin and other fucose-oriented lectins

Author:

Rubén López-Cortés1ORCID,Laura Muinelo-Romay2,Almudena Fernández-Briera3,Emilio Gil Martín4

Affiliation:

1. Doctoral Program in Methods and Applications in Life Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Pontevedra, Galicia ES36310, Spain

2. Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), CIBERONC, Travesía da Choupana, Santiago de Compostela, A Coruña, Galicia ES15706, Spain

3. Molecular Biomarkers, Biomedical Research Centre (CINBIO), Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Pontevedra, Galicia ES36310, Spain

4. Nutrition and Food Science Group, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Universidade de Vigo. Campus Lagoas-Marcosende, Vigo, Pontevedra, Galicia ES36310, Spain

Abstract

Abstract The α(1,6)fucose residue attached to the N-glycoprotein core is suspected to play an essential role in the progression of several types of cancer. Lectins remain the first choice for probing glycan modifications, although they may lack specificity. Thus, efforts have been made to identify new lectins with a narrower core fucose (CF) detection profile. Here, we present a comparison of the classical Aleuria aurantia lectin (AAL), Lens culinaris agglutinin (LCA) and Aspergillus oryzae lectin (AOL) with the newer Pholiota squarrosa lectin (PhoSL), which has been described as being specific for core fucosylated N-glycans. To this end, we studied the binding profiles of the four lectins using mammalian glycan arrays from the Consortium of Functional Glycomics. To validate their glycan specificity, we probed AOL, LCA and PhoSL in western-blot assays using protein extracts from eight common colorectal cancer (CRC) lines and colorectal biopsies from a small cohort of patients with CRC. The results showed that (i) LCA and PhoSL were the most specific lectins for detecting the presence of CF in a concentration-dependent manner; (ii) PhoSL exhibited the highest N-glycan sequence restriction, with preferential binding to core fucosylated paucimannosidic-type N-glycans, (iii) the recognition ability of PhoSL was highly influenced by the presence of terminal N-acetyl-lactosamine; (iv) LCA bound to paucimannosidic, bi-antennary and tri-antennary core fucosylated N-glycans and (v) AOL and AAL exhibited broader specificity towards fucosylation. Together, our results support the choice of LCA as the most appropriate lectin for CF detection, as validated in protein extracts from CRC cell lines and tissue specimens from patients with CRC.

Funder

Ministerio de Educación y Ciencia

CFG

EUREKA

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3