Biochemical characterization of an inverting S/O-HexNAc-transferase and evidence of S-linked glycosylation in Actinobacteria

Author:

Sharma Yogita1,Ahlawat Shimona1,Rao Alka12

Affiliation:

1. CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India

2. Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India

Abstract

Abstract Antimicrobial peptides harboring S- and or O-linked glycans are known as glycocins. Glycocins were first discovered and best characterized in Firmicutes. S-glycosylation is an enzymatic process catalyzed by S-glycosyltransferases of the GT2 family. Using a heterologous expression system, here we describe an inverting S/O-HexNAc-transferase (SvGT), encoded by ORF AQF52_3101 of Streptomyces venezuelae ATCC 15439, along with its acceptor substrate (SvC), encoded by ORF AQF52_3099. Using in vitro and in vivo assays, we define the distinct donor specificity, acceptor specificity, regioselectivity, chemoselectivity and Y(G/A/K/Q/E ≠ ΔG)(C/S/T ≠ Y/N)(G/A ≠ P/Q)G as the minimum acceptor sequon of SvGT. Although UDP-GlcNAc served as the donor in the cellular milieu, SvGT could also utilize UDP-Glc and UDP-GalNAc as donors in vitro. Using mass spectrometry and western blotting, we provide evidence that an anti-O-GlcNAc antibody (CTD110.6) cross-reacts with S-GlcNAc and may be used to detect S-GlcNAcylated glycoconjugates directly. With an understanding of enzyme specificities, we finally employed SvGT to generate two proof-of-concept neoglycocins against Listeria monocytogenes. In conclusion, this study provides the first experimental evidence for S-glycosylation in Actinobacteria and the application of its S/O-HexNAc-transferase in glycocin engineering.

Funder

Council of Scientific and Industrial Research

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3