The role of cell surface sialic acids for SARS-CoV-2 infection

Author:

Sun Xue-Long1

Affiliation:

1. Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115, USA

Abstract

Abstract Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a new virus that has higher contagious capacity than any other previous human coronaviruses (HCoVs) and causes the current coronavirus disease 2019 pandemic. Sialic acids are a group of nine-carbon acidic α-keto sugars, usually located at the end of glycans of cell surface glycoconjugates and serve as attachment sites for previous HCoVs. It is therefore speculated that sialic acids on the host cell surface could serve as co-receptors or attachment factors for SARS-CoV-2 cell entry as well. Recent in silico modeling, molecular modeling predictions and microscopy studies indicate potential sialic acid binding by SARS-CoV-2 upon cell entry. In particular, a flat sialic acid-binding domain was proposed at the N-terminal domain of the spike protein, which may lead to the initial contact and interaction of the virus on the epithelium followed by higher affinity binding to angiotensin-converting enzyme 2 (ACE2) receptor, likely a two-step attachment fashion. However, recent in vitro and ex vivo studies of sialic acids on ACE2 receptor confirmed an opposite role for SARS-CoV-2 binding. In particular, neuraminidase treatment of epithelial cells and ACE2-expressing 293T cells increased SARS-CoV-2 binding. Furthermore, the ACE2 glycosylation inhibition studies indicate that sialic acids on ACE2 receptor prevent ACE2–spike protein interaction. On the other hand, a most recent study indicates that gangliosides could serve as ligands for receptor-binding domain of SARS-CoV-2 spike protein. This mini-review discusses what has been predicted and known so far about the role of sialic acid for SARS-CoV-2 infection and future research perspective.

Funder

National Heart, Lung, and Blood Institute

National Institutes of Health

Faculty Research Development Grant and the Research Fund

Center for Gene Regulation in Health and Disease

Cleveland State University

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3