Preparation and biological activities of anti-HER2 monoclonal antibodies with multibranched complex-type N-glycans

Author:

Takashima Shou1ORCID,Kurogochi Masaki2,Tsukimura Wataru1,Mori Masako1,Osumi Kenji2,Sugawara Shu-ichi2,Amano Junko1,Mizuno Mamoru2,Takada Yoshio1,Matsuda Akio12

Affiliation:

1. Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan

2. Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan

Abstract

Abstract Immunoglobulin G (IgG) has a conserved N-glycosylation site at Asn297 in the fragment crystallizable (Fc) region. Previous studies have shown that N-glycosylation of this site is a critical mediator of the antibody’s effector functions, such as antibody-dependent cellular cytotoxicity. While the N-glycan structures attached to the IgG-Fc region are generally heterogenous, IgGs engineered to be homogenously glycosylated with functional N-glycans may improve the efficacy of antibodies. The major glycoforms of the N-glycans on the IgG-Fc region are bi-antennary complex-type N-glycans, while multibranched complex-type N-glycans are not typically found. However, IgGs with tri-antennary complex-type N-glycans have been generated using the N-glycan remodeling technique, suggesting that more branched N-glycans might be artificially attached. At present, little is known about the properties of these IgGs. In this study, IgGs with multibranched N-glycans on the Fc region were prepared by using a combination of the glycosynthase/oxazoline substrate-based N-glycan remodeling technique and successive reactions with glycosyltransferases. Among the IgGs produced by these methods, the largest N-glycan attached was a bisecting N-acetylglucosamine containing a sialylated penta-antennary structure. Concerning the Fc-mediated effector functions, the majority of IgGs with tri- and tetra-antennary N-glycans on their Fc region showed properties similar to IgGs with ordinary bi-antennary N-glycans.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3