Construction of an InstantPC-derivatized glycan glucose unit database: A foundation work for high-throughput and high-sensitivity glycomic analysis

Author:

Xie Yongjing,Butler MichaelORCID

Abstract

Abstract The glycosylation profile of biotherapeutic glycoproteins is a critical quality attribute that is routinely monitored to ensure desired product quality, safety and efficacy. Additionally, as one of the most prominent and complex post-translational modifications, glycosylation plays a key role in disease manifestation. Changes in glycosylation may serve as a specific and sensitive biomarker for disease diagnostics and prognostics. However, the conventional 2-aminobenzamide-based N-glycosylation analysis procedure is time-consuming and insensitive with poor reproducibility. We have evaluated an innovative streamlined 96-well-plate-based platform utilizing InstantPC label for high-throughput, high-sensitivity glycan profiling, which is user-friendly, robust and ready for automation. However, the limited availability of InstantPC-labeled glycan standards has significantly hampered the applicability and transferability of this platform for expedited glycan structural profiling. To address this challenge, we have constructed a detailed InstantPC-labeled glycan glucose unit (GU) database through analysis of human serum and a variety of other glycoproteins from various sources. Following preliminary hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection separation and analysis, glycoproteins with complex glycan profiles were subjected to further fractionation by weak anion exchange HILIC and exoglycosidase sequential digestion for cross-validation of the glycan assignment. Hydrophilic interaction ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry was subsequently utilized for glycan fragmentation and accurate glycan mass confirmation. The constructed InstantPC glycan GU database is accurate and robust. It is believed that this database will enhance the application of the developed platform for high-throughput, high-sensitivity glycan profiling and that it will eventually advance glycan-based biopharmaceutical production and disease biomarker discovery.

Funder

Agilent Technologie

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3