Reversal of apolipoprotein E4-dependent or chemical-induced accumulation of APP degradation products by vitamin C-induced release of heparan sulfate from glypican-1

Author:

Cheng Fang1,Fransson Lars-Åke1,Mani Katrin1ORCID

Affiliation:

1. Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden

Abstract

Abstract The Apolipoprotein E4 (ApoE4) genotype is the most influential risk factor for sporadic Alzheimer’s disease. It appears to be associated with retarded endosome-to-autophagosome trafficking. The amyloid precursor protein (APP) and the heparan sulfate (HS)-containing proteoglycan glypican-1 (Gpc-1) are both processed in endosomes, and mutually regulated by the APP degradation products and the released HS. We have investigated APP and Gpc-1 processing in ApoE3 and ApoE4 expressing human fibroblasts, in human neural stem cells (NSC) exposed to the cholesterol transport inhibitor U18666A and in induced neurons obtained by reprogramming of ApoE fibroblasts (ApoE-iN). We have used immunofluorescence microscopy, flow cytometry, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis western blotting with antibodies recognizing the released HS, APP, amyloid β(Aβ), late endosomes (Rab7), autophagosomes (LC3) and neurons (Tuj1). We found that the capacity to release HS was not fully utilized in ApoE4 expressing fibroblasts and that HS-Aβ complexes accumulated in the nuclei. In ApoE3 fibroblasts, the β-cleaved APP C-terminal fragment (β-CTF) and Aβ were primarily present in late endosomes and autophagosomes. When HS release from Gpc-1 was enhanced by ascorbate in ApoE4/4 fibroblasts, there was efficient transfer of Aβ and HS from the nuclei to autophagosomes. In U18666A-treated NSC as well as in ApoE4/4-iN we repeatedly found accumulation of APP degradation products (β-CTF/Aβ). This was reversed by subsequent exposure to ascorbate or dehydroascorbic acid.

Funder

Medical Faculty at Lund University

Swedish Cancer Society

Swedish Research Council

Gunvor och Josef Anérs Foundation and the Dementia Foundation

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3