Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19

Author:

Cheng Jinyu1,Zhang Ji2,Wu Zhongdao1,Sun Xiaoqiang1

Affiliation:

1. Zhong-Shan School of Medicine, Sun Yat-Sen University

2. Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center

Abstract

Abstract Inferring how gene expression in a cell is influenced by cellular microenvironment is of great importance yet challenging. In this study, we present a single-cell RNA-sequencing data based multilayer network method (scMLnet) that models not only functional intercellular communications but also intracellular gene regulatory networks (https://github.com/SunXQlab/scMLnet). scMLnet was applied to a scRNA-seq dataset of COVID-19 patients to decipher the microenvironmental regulation of expression of SARS-CoV-2 receptor ACE2 that has been reported to be correlated with inflammatory cytokines and COVID-19 severity. The predicted elevation of ACE2 by extracellular cytokines EGF, IFN-γ or TNF-α were experimentally validated in human lung cells and the related signaling pathway were verified to be significantly activated during SARS-COV-2 infection. Our study provided a new approach to uncover inter-/intra-cellular signaling mechanisms of gene expression and revealed microenvironmental regulators of ACE2 expression, which may facilitate designing anti-cytokine therapies or targeted therapies for controlling COVID-19 infection. In addition, we summarized and compared different methods of scRNA-seq based inter-/intra-cellular signaling network inference for facilitating new methodology development and applications.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3