RFPR-IDP: reduce the false positive rates for intrinsically disordered protein and region prediction by incorporating both fully ordered proteins and disordered proteins

Author:

Liu Yumeng1,Wang Xiaolong1,Liu Bin123

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China

2. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

3. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China

Abstract

Abstract As an important type of proteins, intrinsically disordered proteins/regions (IDPs/IDRs) are related to many crucial biological functions. Accurate prediction of IDPs/IDRs is beneficial to the prediction of protein structures and functions. Most of the existing methods ignore the fully ordered proteins without IDRs during training and test processes. As a result, the corresponding predictors prefer to predict the fully ordered proteins as disordered proteins. Unfortunately, these methods were only evaluated on datasets consisting of disordered proteins without or with only a few fully ordered proteins, and therefore, this problem escapes the attention of the researchers. However, most of the newly sequenced proteins are fully ordered proteins in nature. These predictors fail to accurately predict the ordered and disordered proteins in real-world applications. In this regard, we propose a new method called RFPR-IDP trained with both fully ordered proteins and disordered proteins, which is constructed based on the combination of convolution neural network (CNN) and bidirectional long short-term memory (BiLSTM). The experimental results show that although the existing predictors perform well for predicting the disordered proteins, they tend to predict the fully ordered proteins as disordered proteins. In contrast, the RFPR-IDP predictor can correctly predict the fully ordered proteins and outperform the other 10 state-of-the-art methods when evaluated on a test dataset with both fully ordered proteins and disordered proteins. The web server and datasets of RFPR-IDP are freely available at http://bliulab.net/RFPR-IDP/server.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China

Scientific Research Foundation in Shenzhen

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3