Abstract
Abstract
Sepsis is a life-threatening complication of pneumonia, including coronavirus disease-2019 (COVID-19)-induced pneumonia. Evidence of the benefits of vitamin C (VC) for the treatment of sepsis is accumulating. However, data revealing the targets and molecular mechanisms of VC action against sepsis are limited. In this report, a bioinformatics analysis of network pharmacology was conducted to demonstrate screening targets, biological functions, and the signaling pathways of VC action against sepsis. As shown in network assays, 63 primary causal targets for the VC action against sepsis were identified from the data, and four optimal core targets for the VC action against sepsis were identified. These core targets were epidermal growth factor receptor (EGFR), mitogen-activated protein kinase-1 (MAPK1), proto-oncogene c (JUN), and signal transducer and activator of transcription-3 (STAT3). In addition, all biological processes (including a top 20) and signaling pathways (including a top 20) potentially involved in the VC action against sepsis were identified. The hub genes potentially involved in the VC action against sepsis and interlaced networks from the Kyoto Encyclopedia of Genes and Genomes Mapper assays were highlighted. Considering all the bioinformatic findings, we conclude that VC antisepsis effects are mechanistically and pharmacologically implicated with suppression of immune dysfunction-related and inflammation-associated functional processes and other signaling pathways. These primary predictive biotargets may potentially be used to treat sepsis in future clinical practice.
Funder
National Natural Science Foundation of Guangxi
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献